Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

17.03.2016

Indications for ultra-fast planet formation processes

Observations using the VLA radio telescope array in New Mexico show the innermost portion of a planetary birthplace around the young star HL Tauri in unprecedented detail. Clearly visible is a lump of dust with 3 to 8 times the mass of the Earth, which represents the ideal conditions for the formation of a planet: a planetary nursery with sufficient building material for a planet somewhere between the mass of our own Earth and that of Neptune. The presence of a lump points towards a solution for a fundamental problem of planet formation: how planets can form on the limited time scale available for such processes.

New observations using the Karl G. Jansky Very Large Array (VLA) in New Mexico have produced some of the sharpest radio images yet of the disk around the young star HL Tauri. Earlier images taken with the ALMA observatory had already shown a characteristic pattern of dust rings and gaps in the disk. The new image shows a massive lump of dust in the innermost bright ring, a dust concentration with a mass between 3 and 8 times that of the Earth. MPIA director and co-leader of the discovery team Thomas Henning says: "This lump looks like a 'planetary embryo', which is likely to develop into a fully grown planet over the next millions of years."

The new discovery has wider implications: It has long been known that the simplest models of planet formation have a problem with time scales. In these models, the protoplanetary disks made of gas and dust, which a newly born star, are smooth and homogeneous. All the action happens on small scales, with dust grains sticking to each other and forming ever larger objects, until at long last planets are formed.

But this is a rather slow process - too slow, since time is limited: Over the course of ten million years or so, gas and dust in the disk are driven away by the young star's intense radiation. Without gas and dust as raw material, planet formation will stop altogether. If the star has not managed to form large planets by then, it never will.

The new images appear to show a sped-up, ultra-fast mode of planet formation: Gas flow within the disk produces local concentrations of dust, and planet formation processes in these high-dust regions can proceed much more quickly than usual. Ten years ago, the researchers have found first indications of an ultra-fast planet formation processes in simulations. This is the first time that observations have shown the details: High density dust rings that appear to form lumpy fragments.

Further studies and analyses are underway to model the HL Tauri disk in detail, and to show that the giant lump is indeed attracting nearby matter to grow ever larger. Thomas Henning concludes: "Highly detailed images such as this are raising planet formation research to a new level. Apparently, disk structures such as the lump that we discovered are necessary if we want to explain the formation of systems like our own Solar System."

Researchers of the following instituitions participate in the observations: Max Planck Institutes for Astronomy and Radioastronomy, European Southern Observatory and Exzellence Cluster Universe, Princeton University, USA, National Radio Astronomy Observatory, USA, Universidad Nacional Autónoma de México, Mexico, Consejo Superior de Investigaciones Científicas, Spain and Istituto Nazionale die Astrofisika, Italy.

Further Information:
Press release of the Max Planck Insitute for Astronomy

Original publication:
C. Carrasco-Gonzalez et al., "The VLA view of the HL Tau Disk - Disk Mass, Grain Evolution, and Early Planet Formation", accepted by Astrophysical Journal Letters.

Contact:
Dr. Leonardo Testi
European Southern Observatory
Karl-Schwarzschild-Straße 2
85748 Garching
Germany
E-Mail: ltesti@eso.org

The inner structure of the protoplanetary disk around the young star HL Tauri, as newly observed with the VLA. The lump at about 10 o'clock could be a planetary embryo. (Picture: Carrasco-Gonzalez et al.; Bill Saxton, NRAO/AUI/NSF)


Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de