Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Durchbruch für eine Multi-Messenger Astronomie

16.10.2017 —

Zum ersten Mal ist es gelungen, die Signale von elektromagnetischen sowie Gravitationswellen aus der Kollision zweier Neutronensterne zu messen. Physiker des Exzellenzcluster Universe konnten die Nachwirkungen dieses energiereichen Ereignisses mit ihren Beobachtungsinstrumenten aufzeichnen. Zum ersten Mal können nun Theorien zum genauen Verlauf der Verschmelzung überprüft werden - und die theoretischen Modelle zu den Größen, Massen und Materieeigenschaften von Neutronensternen.

Die Verschmelzung von zwei Neutronensternen ereignete sich in der Galaxie NGC4993, rund 130 Millionen Lichtjahre entfernt von der Erde. Die Gravitationswellen dieses gewaltigen Ereignisses wurden von dem amerikanischen Laser Interferometer Gravitational Wave Observatory (LIGO) und seinem europäischen Schwesterinstrument VIRGO am 17. August 2017 aufgezeichnet (GW170817). Begleitet wurde dieses Ereignis von einem kurzen, weniger als zwei Sekunden dauernden Gammastrahlenausbruch (Gamma-ray burst) (GRB170817A).

Neutronensterne: Materie unter extremsten Bedingungen
Mit Hilfe dieser Beobachtung können die Physiker einer fundamentalen Frage der Physik einen Schritt näherkommen: der nach dem Zustand der Materie in einem Neutronenstern. Neutronensterne sind die kleinsten und dichtesten Sterne, von deren Existenz wir wissen. Als Endzustand des Kollapses eines massereichen Sternes haben Neutronensterne einen typischen Radius von 10 bis 20 Kilometern, bei etwa zweifacher Masse der Sonne. Modellen zufolge bestehen sie fast vollständig aus Neutronen – aufgrund der enormen Dichte wurden die Elektronen der Atomhüllen in die Atomkerne gequetscht, und haben die dortigen Protonen in Neutronen umgewandelt.

Abstoßende Kernkräfte verhindern den weiteren KollapsEinen weiteren Kollaps der Materie verhindern abstoßende starke Kernkräfte zwischen den Neutronen. „Bisher wissen wir jedoch noch fast nichts über die genaue Zusammensetzung und die Teilchenwechselwirkungen der Materie unter so extremen Bedingungen“, sagt Laura Fabbietti, Professorin für dichte und seltsame hadronische Materie an der Technischen Universität München (TUM) und federführende Wissenschaftlerin des Exzellenzclusters Universe. Sie erforscht seit Jahren die physikalischen Eigenschaften von Materie in Neutronensternen. „Nun können wir erstmals unsere Theorien überprüfen.“

Ein kurzer GammastrahlenausbruchBeobachtet werden konnte die Kollision mit den beiden am Max-Planck-Institut für extraterrestrische Physik gebauten Detektoren, Fermi-GBM sowie dem Spektrometer auf INTEGRAL. „Als Ursprung eines solchen charakteristischen kurzen Gammastrahlenausbruchs werden seit 30 Jahren verschmelzende Neutronensterne vermutet“, sagt PD Dr. Jochen Greiner vom MPE, einer der federführenden Wissenschaftler des Exzellenzclusters Universe. „Jetzt haben wir erstmals eine eindeutige Bestätigung für diese Modellvorstellung.“

Das Leuchten einer Kilonova
Die Physiker erwarteten auch ein über Tage andauerndes Leuchten im Bereich des optischen/nahen Infrarot-Lichts, das Astronomen als Kilonova bezeichnen. „In alle Richtungen wird in Folge des Verschmelzungsprozesses Materie ausgeschleudert, vor allem Neutronen und in geringer Anzahl Protonen und Helium-Atomkerne. Innerhalb weniger Sekunden wandeln sich die Helium-Kerne durch Verschmelzung, weitere Neutroneneinfänge und nachfolgende radioaktive Zerfälle und Spaltungsreaktionen in schwere Elemente mit hohen Atommassenzahlen um.

Zerfallende radioaktive Elemente
Die neu entstandenen radioaktiven Atomkerne zerfallen in stabile Elemente und senden dabei bis zu zehn Tage lang Gammastrahlung aus, die ihrerseits das ausgeworfene Material heizt und zu einer breitbandigen elektromagnetischen Emission führt. Auch diese Kilonova wurde von mehreren unabhängig arbeitenden Astronomen-Gruppen innerhalb von 12 Stunden in dem etwa 100 Quadratgrad großen Fehlerbereich des Gravitationswellenereignisses aufgespürt, unter anderem mithilfe der Dark Energy Camera der Dark Energy Survey (DES), einem Zusammenschluss internationaler Wissenschaftlern zur Himmelsdurchmusterung im optischen und nahinfraroten Spektralbereich. Federführende Wissenschaftler des Exzellenzclusters Universe, Professor Jochen Weller und Professor Joseph Mohr von der Ludwig-Maximilians-Universität, gehören ebenfalls diesem Forschungsverbund an. „Diese Beobachtungen bestätigen die theoretischen Vorstellungen über das Verschmelzen von Neutronensternen und die dabei auftretenden energiereichen Prozesse, wie das Ausschleudern erheblicher Mengen radioaktiver Materie“, sagt Jochen Greiner.

Bestätigung der Theorien zur Entstehung der schwersten Elemente
„Vor allem aber liefern sie neue Einsichten zur Entstehung der schwersten Elemente“, ergänzt Professor Hans-Thomas Janka vom MPA, ebenfalls einer der federführenden Wissenschaftler am Exzellenzcluster Universe, der sich seit langem mit den theoretischen Modellen von Neutronensternen, Supernovae und Gammastrahlenausbrüchen befasst.

Kein signifikantes Neutrino-SignalWeitere kosmische Zeugen eines so hochenergetischen Ereignisses wie eine Neutronenstern-Verschmelzung können Neutrinos sein. Allerdings konnten die Wissenschaftler der IceCube-Kollaboration, die am Südpol das weltweit größte Neutrino-Teleskop betreiben, kein signifikantes Signal entdecken. Die Erklärung dafür ist einfach: „Das Ereignis war zu weit weg“, erklärt Elisa Resconi, Professorin für Experimentalphysik mit kosmischen Teilchen an der TUM und federführende Wissenschaftlerin des Exzellenzclusters Universe. „Neutrinos sind sehr flüchtige Teilchen. Bei solch großen Entfernungen können wir mit unseren Detektoren die Boten solcher Ereignisse kaum mehr aufspüren. Aber wir hoffen darauf, dass IceCube von zukünftigen Ereignissen Neutrino-Signale detektieren wird.“

Beginn einer Gravitationswellen-Astronomie
Seit dem vergangenen Jahr wurden bereits mehrfach Gravitationswellen von kollidierenden Schwarzen Löchern gemessen, was mit dem Nobelpreis für Physik 2017 gewürdigt wurde. Das nun bekannt gegebene Ereignis markiert einen weiteren, entscheidenden Durchbruch hin zu einer Multi-Messenger-Astronomie: „Mit Hilfe von Gravitationswellen sind nun eine Vielzahl an neuen, zur klassischen Astronomie komplementären Messungen möglich, und damit sind Antworten auf bislang unbeantwortete Fragen in Reichweite gerückt“, sagt Elisa Resconi.

Originalveröffentlichungen:
Antares, IceCube, Pierre Auger, LIGO Scientific and Virgo Collaborations: Search for High-Energy Neutrinos from Binary Neutron Star Merger GW170817 with Antares, IceCube and the Pierre Auger Observatory, eingereicht bei The Astrophysical Journal

S.J. Smartt et al.: A kilonova as the electromagnetic counterpart to a gravitational wave source, Nature, 16 October 2017, 16:00 CEST, DOI: 10.1038/nature24303

 

Kontakt:
Prof. Dr. Laura Fabbietti
Technische Universität München
Physik Department
James-Franck-Straße
85748 Garching
T: 089 289 12433
E: laura.fabbietti@ph.tum.de

PD Dr. Jochen Greiner
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
T: 089 30000-3847
E-Mail: jcg@mpe.mpg.de

Prof. Dr. Hans-Thomas Janka
Max-Planck-Institut für Astrophysik
Karl-Schwarzschild-Straße 1
85748 Garching
T: 089 30000-2228
E: thj@mpa-garching.mpg.de

Prof. Dr. Elisa Resconi
Technische Universität München
Physik Department
James-Franck-Straße
85748 Garching
T: 089 289 12422
E: elisa.resconi@tum.de

Pressekontakt:
Stefan Waldenmaier
Exzellenzcluster Universe
Boltzmannstraße 2
85748 Garching
T: 089 289 35831-7119
E: stefan.waldenmaier@universe-cluster.de

Nach einer Kollision von Neutronensternen in der Galaxie NGC4993 waren auch 130 Millionen Lichtjahre entfernt Gravitationswellen und ein sprunghafter Anstieg der Gammastrahlung messbar. (Bild: ESO)

Soziale Netzwerke

google.com

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de